2025-04-06
We now support iluvatar.ai/gpu(i.e MR-V100、BI-V150、BI-V100) by implementing most device-sharing features as nvidia-GPU, including:
Compatibility Certification: HAMi has completed deep compatibility certification with Iluvatar GPU products. For detailed information, please refer to Iluvatar Compatibility Certification. This certification ensures stability and reliability in production environments.
NOTICE: Install only gpu-manager, don't install gpu-admission package.
helm install hami hami-charts/hami --set scheduler.kubeScheduler.imageTag={your kubernetes version} --set iluvatarResourceMem=iluvatar.ai/vcuda-memory --set iluvatarResourceCore=iluvatar.ai/vcuda-core -n kube-system
NOTE: The default resource names are:
iluvatar.ai/vgpu
for GPU countiluvatar.ai/vcuda-memory
for memory allocationiluvatar.ai/vcuda-core
for core allocationYou can customize these names using the parameters above.
HAMi divides each Iluvatar GPU into 100 units for resource allocation. When you request a portion of a GPU, you're actually requesting a certain number of these units.
iluvatar.ai/vcuda-memory
represents 256MB of device memoryiluvatar.ai/vcuda-core
represents 1% of the available compute coresIluvatar GPUs can now be requested by a container
using the iluvatar.ai/vgpu
, iluvatar.ai/vcuda-memory
and iluvatar.ai/vcuda-core
resource type:
apiVersion: v1
kind: Pod
metadata:
name: poddemo
spec:
restartPolicy: Never
containers:
- name: poddemo
image: harbor.4pd.io/vgpu/corex_transformers@sha256:36a01ec452e6ee63c7aa08bfa1fa16d469ad19cc1e6000cf120ada83e4ceec1e
command:
- bash
args:
- -c
- |
set -ex
echo "export LD_LIBRARY_PATH=/usr/local/corex/lib64:$LD_LIBRARY_PATH">> /root/.bashrc
cp -f /usr/local/iluvatar/lib64/libcuda.* /usr/local/corex/lib64/
cp -f /usr/local/iluvatar/lib64/libixml.* /usr/local/corex/lib64/
source /root/.bashrc
sleep 360000
resources:
requests:
iluvatar.ai/vgpu: 1
iluvatar.ai/vcuda-core: 50
iluvatar.ai/vcuda-memory: 64
limits:
iluvatar.ai/vgpu: 1
iluvatar.ai/vcuda-core: 50
iluvatar.ai/vcuda-memory: 64
NOTICE1: Each unit of vcuda-memory indicates 256M device memory
NOTICE2: You can find more examples in examples/iluvatar folder
You can specify which GPU devices to use or exclude using annotations:
apiVersion: v1
kind: Pod
metadata:
name: poddemo
annotations:
# Use specific GPU devices (comma-separated list)
iluvatar.ai/use-gpuuuid: "node1-iluvatar-0,node1-iluvatar-1"
# Or exclude specific GPU devices (comma-separated list)
iluvatar.ai/nouse-gpuuuid: "node1-iluvatar-2,node1-iluvatar-3"
spec:
# ... rest of pod spec
NOTE: The device ID format is
{node-name}-iluvatar-{index}
. You can find the available device IDs in the node status.
You can find the UUIDs of Iluvatar GPUs on a node using the following command:
kubectl get pod <pod-name> -o yaml | grep -A 10 "hami.io/<card-type>-devices-allocated"
Or by examining the node annotations:
kubectl get node <node-name> -o yaml | grep -A 10 "hami.io/node-register-<card-type>"
Look for annotations containing device information in the node status.
set -ex
echo "export LD_LIBRARY_PATH=/usr/local/corex/lib64:$LD_LIBRARY_PATH">> /root/.bashrc
cp -f /usr/local/iluvatar/lib64/libcuda.* /usr/local/corex/lib64/
cp -f /usr/local/iluvatar/lib64/libixml.* /usr/local/corex/lib64/
source /root/.bashrc
iluvatar.ai/vcuda-memory
resource is only effective when iluvatar.ai/vgpu=1
.iluvatar.ai/vgpu > 1
) do not support vGPU mode.RiseUnion has completed deep compatibility certification with Iluvatar. The Rise VAST AI Computing Power Management Platform now fully supports Iluvatar's high-performance general-purpose GPU accelerator cards, providing users with a more powerful and comprehensive AI computing resource management and scheduling solution.
For more certification details, please refer to RiseUnion and Iluvatar Compatibility Certification.
To learn more about RiseUnion's GPU pooling, virtualization and computing power management solutions, please contact us: contact@riseunion.io